Second International Conference on

Salinity Gradient Energy

September 10th-12th, 2014, Leeuwarden, The Netherlands

Scuola Politecnica Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica (DICGIM), viale delle Scienze (Ed.6), 90128 Palermo, Italy

CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis

<u>Gurreri L.*</u>, Tamburini A., Cipollina A., Micale G., Ciofalo M.

*e-mail address: luigi.gurreri@unipa.it

RED CHANNELS

Net spacers for membranes separation

OBJECTIVES, TOOLS AND ACTIVITIES

Objective: prediction of fluid flow and mass transfer in spacer-filled channels for RED applications

Process optimization

Tools: 3D-Computational Fluid Dynamics (CFD) modelling

- Activities: parametric analysis
- Wires shape: woven and non woven spacers
- Pitch to height ratio (*I/h*)
- Channel orientation (fluid flow direction)
- Reynolds numbers typical of RED applications

NUMERICAL METHODOLOGIES

CASES INVESTIGATED

Diamond spacers

Overlapped

Filaments shape

- Overlapped (o)
- > Woven (w)

Fluid flow direction α

▶ 0°

➢ 45°

Woven

Size

Pitch to height ratio l/h = 2, 3, 4 (h = 0.3 mm)

Reynolds number *Re* 1, 4, 16, 64

CFD MODELING

The finite volumes code **Ansys-CFX 14** was employed to discretize and solve the governing equations (Newtonian and incompressible fluid). **Steady** regime at all flow rates investigated

$$\vec{\nabla} \cdot \vec{u} = 0$$

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \vec{\nabla} \cdot \vec{u} = -\vec{\nabla}p + \mu \nabla^2 \vec{u} + \vec{P}$$
Body force \Rightarrow fluid motion in a periodic domain
$$\vec{\nabla} \left(\tilde{C} \vec{u} \right) = \vec{\nabla} \left[D \frac{b}{b + (a - M_e)(\tilde{C} + ks)} \vec{\nabla} \tilde{C} \right] - ku_s$$

NaCl solution	Molarity	Density	Viscosity	Diffusivity
at T = 25 °C	[mol/l]	[kg/m³]	[Pa s]	[m²/s]
Seawater	0.5	1017.2	9.31e-04	1.47e-09

For details see L. Gurreri, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis, J. Membr. Sci., 468 (2014) 133-148.

BASIC EQUATIONS*

Transport equation for a binary electrolyte

Multicomponent diffusion equation (Stefan-Maxwell)

$$C_i \overline{\nabla} \mu_i = \sum_j K_{ij} \left(\overline{u_j} - \overline{u_i} \right) = RT \sum_j \frac{C_i C_j}{C_T D_{ij}} \left(\overline{u_j} - \overline{u_i} \right)$$

Electroneutrality condition binary electrolyte

$$z_{+}C_{+} = -z_{-}C_{-}$$

*J.S. Newman, Electrochemical Systems, Second Edition, 2nd edition, Prentice Hall, Englewood Cliffs, NJ (1991)

K. Kontturi, L Murtomäki, J.A. Manzanares, Ionic Transport Processes In Electrochemistry and Membrane Science, Oxford University Press (2008)

Numerical methodologies

CFD MODELLING DEVELOPMENT

Implementation of transport equations

Assuming density as a linear function of C

CFD MODELLING DEVELOPMENT

Implementation of transport equations

Migrative term

$$\frac{\partial C}{\partial t} + \overline{\nabla} \left(C \overline{u}_0 \right) = \overline{\nabla} \cdot \left[D \frac{b}{b + (a - M_c)C} \overline{\nabla} C \right] - \frac{\overline{i} \cdot \overline{\nabla} t_i^0}{z_i v_i F}$$

- Current density
- Equations system not closed
- Above transport equation can be solved
 - when coupled with other equations \rightarrow entire stack as domain
 - or when current density distribution is known (spacer-less channel)

CFD MODELLING DEVELOPMENT

Implementation of transport equations

Simulations of an empty channel

- Concentration profiles were unaffected by the migrative term
- Migrative term is negligible compared to the diffusive one
- \rightarrow Migrative flux is quite uniform

Transport equation implemented for Unit Cell

Fully developed flow \rightarrow Linear variation of concentration along the flow direction (s) Periodic boundary conditions despite the change of the bulk concentration

Transport equation for the electrolyte in unit cell

Computational domain

Wall boundary at membrane-solution interface

Uniform flux at the membrane-solution interfaces

Mesh and grid dependence analysis

Grid dependence by varying the size

- results independent of the discretization degree
- accuracy
- computational savings

RESULTS

Pressure drop

FRICTION FACTOR

$$f = \frac{\Delta p}{l} \frac{d_h}{2\rho u_{s,mean}^2} \qquad \qquad f = ARe^n$$

- •The presence of obstacles causes *f* higher than the empty ch.
- *α* has irrelevant effects
- *f* reduces by increasing the **pitch**

• W-**shape** implies *f* higher than the o

- At the lowest Re numbers, $n = -1 \rightarrow$ creeping flow
- At higher Re, *n* deviates from -1, since the obstacles induce increasing inertial effects \rightarrow flow fields not self-similar

Results: pressure drop

PRESSURE DROP NORMALIZED

 $f_{empty} = 24Re^{-1}$

• Spacers provide *f* **3-20 times** higher than the **empty ch**.

•α is irrelevant at these Re

• The **pitch** has significant effects, especially for the w-shape

• W-shape leads to pressure drop increase by 106%, 67%, 54%, for I/h=2,3,4 respectively

Mass transfer

Results: mass transfer

MASS TRANSFER COEFFICIENT

Effect of α in w-shape

Effect of filaments shape

Effect of α in o-shape

Re=16

Effect of α in o-shape

Significant effect of the asymmetry for o-α0

SHERWOOD NUMBER

• Mixing not favored at very low Re due to the calm regions caused by the filaments, especially for $\alpha 0$. Sh much higher at higher Re

• α : $Sh_{w-\alpha 45} > Sh_{w-\alpha 0}$; for o-shape the effect is slighter, but the influence of Re is more complex

• $Sh_{w-\alpha 45}$ reduces by increasing l/h, for $\alpha 0$ this occurs only at the highest Re; for o-shape the dependence on l/h is not significant

•
$$Sh_w > Sh_o$$

SHERWOOD NUMBER

- **Overlapped-** α **0** is the only case with **asymmetry** \rightarrow distribution and average Sh different at the two walls
- Very different behavior for the *high* and the *low* walls
- Trend not straightforward with Re

Second International Conference on Salinity Gradient Energy, September 10th-12th, 2014, Leeuwarden, The Netherlands *CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis*

SHERWOOD NUMBER

- **Pn**: dimensionless pumping power consumption
- In a quantitative analysis, the trends of
 Sh=f(Pn) are different with respect to Sh=f(Re)
- Qualitatively, the same considerations can be applied as before

•As a difference, the pitch has not a significant effect for the w- $\alpha 0$

CONCLUSIONS

CONCLUSIONS

CFD modelling of spacer filled ch. for RED

- Fluid flow and mass transfer behaviour
- Parametric analysis of:
 - \cdot Wires shape: woven and non woven spacers
 - · Pitch to height ratio (l/h)
 - · Channel orientation (fluid flow direction)
 - · Re effects
- Process efficiency: Pn and Sh

OPTIMAL CHANNEL CONFIGURATION

Influence of various factors on efficiency.

Simulation results as input data for a process simulator

ightarrow Optimal channel configuration and Re

Thank you for your attention

Luigi Gurreri luigi-gurreri@unipa.it

EuroMed 2015 Desalination for Clean Water and Energy Palermo, Italy, 10-14 May 2015

